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1 Introduction

The problem of aligning heterogeneous ontologies via semantic mappings has been
identified as one of the major challenges of semantic web technologies. In order to ad-
dress this problem, a number of languages for representing semantic relations between
elements in different ontologies as a basis for reasoning and query answering across
multiple ontologies have been proposed [28]. In the presence of real world ontologies,
it is unrealistic to assume that mappings between ontologies are created manually by
domain experts, due to the large size of existing ontologies. Recently, a number of
heuristic methods, relying on linguistic and structural criteria, for matching elements
from different ontologies have been proposed that support the creation of mappings be-
tween different languages by suggesting candidate mappings (e.g., [11]). Such methods
often trade off precision and recall, as shown by evaluation studies [10,12].

Automatically created mappings often contain uncertain hypotheses and errors that
need to be dealt with: (i) mapping hypotheses are often oversimplifying, supporting very
simple semantic relations (mostly equivalence between individual elements); (ii) there
may be conflicts between different hypotheses for semantic relations from different
matching components and often even from the same matcher; (iii) semantic relations
are only given with a degree of confidence in their correctness. We argue that the most
suitable way of dealing with uncertainties in mappings is to provide means to explicitly
represent uncertainties in the target language that encodes the mappings.

There is a large body of work on integrating ontologies and rules. One type of
integration is to build rules on top of ontologies, that is, rule-based systems that use
vocabulary from ontology knowledge bases. Another form of integration is to build
ontologies on top of rules, where ontological definitions are supplemented by rules
or imported from rules. Both types of integration have been realized in recent hybrid
integrations of rules and ontologies, called description logic programs (or dl-programs),
which have the form KB =(L,P ), where L is a description logic knowledge base,
and P is a finite set of rules involving either queries to L in a loose integration [7,8]



or concepts and roles from L as unary resp. binary predicates in a tight integration [19]
(see especially [8,25,19] for detailed overviews on the different types of description
logic programs).

Other works explore formalisms for uncertainty reasoning in the Semantic Web,
which are especially probabilistic extensions of description logics [16,20], web ontol-
ogy languages [3,4], and description logic programs [21].

In this paper, we propose tightly integrated probabilistic description logic programs
under the answer set semantics as a language for representing and reasoning with un-
certain and possibly inconsistent ontology mappings. The approach is a tight integration
of disjunctive logic programs under the answer set semantics, the expressive descrip-
tion logics SHIF(D) and SHOIN (D), and Bayesian probabilities. More precisely,
the tight integration between ontology and rule languages of [19] is combined with
probabilistic uncertainty as in the ICL [27].

The probabilistic description logic programs here are very different from the ones
in [21] (and their recent tractable variant in [22]). First, they are based on the tight inte-
gration between the ontology component L and the rule component P of [19], while the
ones in [21,22] realize the loose query-based integration between the ontology compo-
nent L and the rule component P of [7]. This implies in particular that the vocabularies
of L and P here may have common elements, while the vocabularies of L and P in
[21,22] are necessarily disjoint.

2 Tightly Integrated Disjunctive DL-Programs

In this section, we recall the tightly integrated approach to disjunctive description logic
programs (or simply disjunctive dl-programs) KB =(L,P ) under the answer set se-
mantics from [19], where KB consists of a description logic knowledge base L and a
disjunctive logic program P . The description logic languages that we consider here are
SHIF(D) and SHOIN (D), which stand behind the web ontology languages OWL
Lite and OWL DL [17], respectively, and for which we refer the reader, e.g., to the full
version [2]. The semantics of disjunctive dl-programs is defined in a modular way as
in [7,8], but it allows for a much tighter integration of L and P . Note that we do not
assume any structural separation between the vocabularies of L and P . The main idea
behind the semantics is to interpret P relative to Herbrand interpretations that are com-
patible with L, while L is interpreted relative to general interpretations over a first-order
domain. Thus, we modularly combine the standard semantics of logic programs and of
description logics, which allows for building on the standard techniques and results
of both areas. As another advantage, the novel disjunctive dl-programs are decidable,
even when their components of logic programs and description logic knowledge bases
are both very expressive. We refer especially to [19] for further details on the novel
approach to disjunctive dl-programs and for a detailed comparison to related works.

Syntax. We assume a first-order vocabulary Φ with finite nonempty sets of constant
and predicate symbols, but no function symbols. We use Φc to denote the set of all
constant symbols in Φ. We also assume a set of data values V (relative to a datatype
theory D=(∆D, ·D)) and pairwise disjoint (denumerable) sets A, RA, RD, and I of
atomic concepts, abstract roles, datatype roles, and individuals, respectively. We assume



that (i) Φc is a subset of I∪V, and that (ii) Φ and A (resp., RA ∪RD) may have unary
(resp., binary) predicate symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol
from Φ. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity
n > 0 from Φ, and t1, . . . , tn are terms. A literal l is an atom p or a default-negated
atom not p. A disjunctive rule (or simply rule) r is an expression of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k, m, n > 0. We call α1 ∨ · · · ∨ αk

the head of r, while the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body.
We define H(r) = {α1, . . . , αk} and B(r) =B+(r)∪B−(r), where B+(r) = {β1, . . . ,
βn} and B−(r) = {βn+1, . . . , βn+m}. A disjunctive program P is a finite set of dis-
junctive rules of the form (1). We say P is positive iff m =0 for all disjunctive rules (1)
in P . We say P is a normal program iff k 6 1 for all disjunctive rules (1) in P .

A tightly integrated disjunctive description logic program (or simply disjunctive
dl-program) KB =(L,P ) consists of a description logic knowledge base L and a dis-
junctive program P . We say KB is positive iff P is positive. We say KB is a normal
dl-program iff P is a normal program.

Semantics. We adopt the answer set semantics for disjunctive dl-programs as a gener-
alization of the answer set semantics of ordinary disjunctive logic programs. We refer
the reader to the full version of this paper [2] for formal details on such a semantics.

3 Tightly Integrated Probabilistic DL-Programs

In this section, we present a tightly integrated approach to probabilistic disjunctive
description logic programs (or simply probabilistic dl-programs) under the answer set
semantics. Differently from [21] (in addition to being a tightly integrated approach),
the probabilistic dl-programs here also allow for disjunctions in rule heads. Similarly to
the probabilistic dl-programs in [21], they are defined as a combination of dl-programs
with Poole’s ICL [27], but using the tightly integrated disjunctive dl-programs of [19],
rather than the loosely integrated dl-programs of [7,8]. Poole’s ICL is based on ordinary
acyclic logic programs P under different “choices”, where every choice along with P
produces a first-order model, and one then obtains a probability distribution over the set
of all first-order models by placing a probability distribution over the different choices.
We use the tightly integrated disjunctive dl-programs under the answer set semantics of
[19], instead of ordinary acyclic logic programs under their canonical semantics (which
coincides with their answer set semantics). We first introduce the syntax of probabilistic
dl-programs and then their answer set semantics.

Syntax. We now define the syntax of probabilistic dl-programs and of probabilistic
queries to them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ−DLΦ.
Any A∈C is an alternative of C and any element a∈A an atomic choice of C. Intu-
itively, every alternative A∈C represents a random variable and every atomic choice



a∈A one of its possible values. A total choice of C is a set B⊆HBΦ such that
|B ∩ A|=1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B of C
represents an assignment of values to all the random variables. A probability µ on
a choice space C is a probability function on the set of all total choices of C. Intu-
itively, every probability µ is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a) = 1 for all A∈C, and (ii) µ(B) = Πb∈Bµ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A tightly integrated probabilistic disjunctive description logic program (or sim-
ply probabilistic dl-program) KB =(L,P,C, µ) consists of a disjunctive dl-program
(L,P ), a choice space C such that no atomic choice in C coincides with the head of
any rule in ground(P ), and a probability µ on C. Intuitively, since the total choices
of C select subsets of P , and µ is a probability distribution on the total choices of C,
every probabilistic dl-program is the compact representation of a probability distribu-
tion on a finite set of disjunctive dl-programs. Observe here that P is fully general and
not necessarily stratified or acyclic. We say KB is normal iff P is normal. A proba-
bilistic query to KB has the form ∃(c1(x) ∨ · · · ∨ cn(x))[r, s], where x, r, s is a tuple
of variables, n > 1, and each ci(x) is a conjunction of atoms constructed from pred-
icate and constant symbols in Φ and variables in x. Note that the above probabilistic
queries can also be easily extended to conditional expressions as in [21].

Semantics. We now define an answer set semantics of probabilistic dl-programs, and
we introduce the notions of consistency, consequence, tight consequence, and correct
and tight answers for probabilistic queries to probabilistic dl-programs. Note that the
semantics is based on subjective probabilities defined on a set of possible worlds.

Given a probabilistic dl-program KB =(L,P,C, µ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an answer set of KB
iff (i) every interpretation I ⊆HBΦ with Pr(I) > 0 is an answer set of (L,P ∪ {p← |
p∈B}) for some total choice B of C, and (ii) Pr(

∧
p∈B p) =

∑
I⊆HBΦ, B⊆I Pr(I) =

µ(B) for every total choice B of C. Informally, Pr is an answer set of KB =(L,P,C,
µ) iff (i) every interpretation I ⊆HBΦ of positive probability under Pr is an answer set
of the dl-program (L,P ) under some total choice B of C, and (ii) Pr coincides with µ
on the total choices B of C. We say KB is consistent iff it has an answer set Pr .

We define the notions of consequence and tight consequence as follows. Given a
probabilistic query ∃(q(x))[r, s], the probability of q(x) in a probabilistic interpretation
Pr under a variable assignment σ, denoted Prσ(q(x)) is defined as the sum of all
Pr(I) such that I ⊆HBΦ and I |=σ q(x). We say (q(x))[l, u] (where l, u∈ [0, 1]) is a
consequence of KB , denoted KB‖∼ (q(x))[l, u], iff Prσ(q(x))∈ [l, u] for every answer
set Pr of KB and every variable assignment σ. We say (q(x))[l, u] (where l, u∈ [0, 1])
is a tight consequence of KB , denoted KB ‖∼tight(q(x))[l, u], iff l (resp., u) is the
infimum (resp., supremum) of Prσ(q(x)) subject to all answer sets Pr of KB and all σ.
A correct (resp., tight) answer to a probabilistic query ∃(c1(x) ∨ · · · ∨ cn(x))[r, s] is a
ground substitution θ (for the variables x, r, s) such that (c1(x)∨ · · · ∨ cn(x))[r, s] θ is
a consequence (resp., tight consequence) of KB .



4 Representing Ontology Mappings with Confidence Values

We now show how a tightly integrated probabilistic dl-program KB =(L,P,C, µ) can
be used for representing (possibly inconsistent) mappings with confidence values be-
tween two ontologies. Intuitively, L encodes the union of the two ontologies, while P ,
C, and µ encode the mappings between the ontologies, where confidence values can
be encoded as error probabilities, and inconsistencies can also be resolved via trust
probabilities (in addition to using disjunctions and nonmonotonic negations in P ).

The probabilistic extension of tightly integrated disjunctive dl-programs KB =
(L,P ) to tightly integrated probabilistic dl-programs KB ′ =(L,P,C, µ) provides us
with a means to explicitly represent and use the confidence values provided by match-
ing systems. In particular, we can interpret the confidence value as an error probability
and state that the probability that a mapping introduces an error is 1 − n. Conversely,
the probability that a mapping correctly describes the semantic relation between ele-
ments of the different ontologies is 1 − (1 − n) = n. This means that we can use
the confidence value n as a probability for the correctness of a mapping. The indirect
formulation is chosen, because it allows us to combine the results of different match-
ers in a meaningful way. In particular, if we assume that the error probabilities of two
matchers are independent, we can calculate the joint error probability of two matchers
that have found the same mapping rule as (1− n1) · (1− n2). This means that we can
get a new probability for the correctness of the rule found by two matchers which is
1− (1−n1) · (1−n2). This way of calculating the joint probability meets the intuition
that a mapping is more likely to be correct if it has been discovered by more than one
matcher because 1− (1− n1) · (1− n2) > n1 and 1− (1− n1) · (1− n2) > n2.

In addition, when merging inconsistent results of different matching systems, we
weigh each matching system and its result with a (user-defined) trust probability, which
describes our confidence in its quality. All these trust probabilities sum up to 1. For
example, the trust probabilities of the matching systems m1, m2, and m3 may be 0.6,
0.3, and 0.1, respectively. That is, we trust most in m1, medium in m2, and less in m3.

Example 4.1. We illustrate this approach using an example from the benchmark data
set of the OAEI 2006 campaign. In particular, we consider the case where the publi-
cation ontology in test 101 (O1) is mapped on the ontology of test 302 (O2). Below
we show some mappings that have been detected by the matching system hmatch that
participated in the challenge. The mappings are described as rules in P , which contain
a conjunct indicating the matching system that has created it and a number for identify-
ing the mapping. These additional conjuncts are atomic choices of the choice space C
and link probabilities (which are specified in the probability µ on the choice space C)
to the rules (where the common concept Proceedings of both ontologies O1 and O2 is
renamed to the concepts Proceedings1 and Proceedings2, respectively):

Book(X)← Collection(X) ∧ hmatch1 ;
Proceedings2(X)← Proceedings1(X) ∧ hmatch2 .

We define the choice space according to the interpretation of confidence described
above. The resulting choice space is C = {{hmatchi,not hmatchi} | i ∈ {1, 2}}. It
comes along with the probability µ on C, which assigns the corresponding confidence
value n (from the matching system) to each atomic choice hmatchi and the complement



1 − n to the atomic choice not hmatchi. In our case, we have µ(hmatch1) = 0.62,
µ(not hmatch1) = 0.38, µ(hmatch2) = 0.73, and µ(not hmatch2) = 0.27.

The benefits of this explicit treatment of uncertainty becomes clear when we now
try to merge this mapping with the result of another matching system. Below are two
examples of rules that describe correspondences for the same ontologies that have been
found by the falcon system:

InCollection(X)← Collection(X) ∧ falcon1 ;
Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

Here, the confidence encoding yields the choice space C ′ = {{falconi,not falconi} |
i∈{1, 2}} along with the probabilities µ′(falcon1) = 0.94, µ′(not falcon1) = 0.06,
µ′(falcon2) = 0.96, and µ′(not falcon2) = 0.04.

Note that directly merging these two mappings as they are would not be a good idea
for two reasons. The first one is that we might encounter an inconsistency problem.
For example, in this case, the ontology O2 imposes that the concepts InCollection
and Book are to be disjoint. Thus, for each publication pub belonging to the con-
cept Collection in the ontology O1, the merged mappings infer Book(pub) and
InCollection(pub). Therefore, the first rule of each of the mappings cannot contribute
to a model of the knowledge base. The second reason is that a simple merge does not
account for the fact that the mapping between the Proceedings1 and Proceedings2 con-
cepts has been found by both matchers and should therefore be strengthened. Here, the
mapping rule has the same status as any other rule in the mapping and each instance of
the rule has two probabilities at the same time.

Suppose we associate with hmatch and falcon the trust probabilities 0.55 and 0.45,
respectively. Based on the interpretation of confidence values as error probabilities, and
on the use of trust probabilities when resolving inconsistencies between rules, we can
now define a merged mapping set that consists of the following rules:

Book(X)← Collection(X) ∧ hmatch1 ∧ sel hmatch1 ;
InCollection(X)← Collection(X) ∧ falcon1 ∧ sel falcon1 ;
Proceedings2(X)← Proceedings1(X) ∧ hmatch2 ;
Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

The new choice space C ′′ and the new probability µ′′ on C ′′ are obtained from C ∪C ′

and µ · µ′ (which is the product of µ and µ′, that is, (µ · µ′)(B ∪B′) =µ(B) · µ′(B′)
for all total choices B of C and B′ of C ′), respectively, by adding the alternative {sel
hmatch1, sel falcon1} and the two probabilities µ′′(sel hmatch1) = 0.55 and µ′′(sel
falcon1) = 0.45 for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule Proceedings2(X)←Proceedings1(X) holds
with the probability 1− (1−µ′′(hmatch2)) · (1−µ′′(falcon2))= 0.9892, as desired.
Informally, any randomly chosen instance of Proceedings of the ontology O1 is also
an instance of Proceedings of the ontology O2 with the probability 0.9892. In contrast,
if the mapping rule would have been discovered only by falcon or hmatch, respec-
tively, such an instance of Proceedings of the ontology O1 would be an instance of
Proceedings of the ontology O2 with the probability 0.96 or 0.73, respectively.

A probabilistic query Q asking for the probability that a specific publication pub
in the ontology O1 is an instance of the concept Book of the ontology O2 is given



by Q=∃(Book(pub))[R,S]. The tight answer θ to Q is given by θ = {R/0, S/0}, if
pub is not an instance of the concept Collection in the ontology O1 (since there is no
mapping rule that maps another concept than Collection to the concept Book ). If pub is
an instance of the concept Collection , however, then the tight answer to Q is given by
θ = {R/0.341, S/0.341} (as µ′′(hmatch1) ·µ′′(sel hmatch1) = 0.62 · 0.55 = 0.341).
Informally, pub belongs to the concept Book with the probabilities 0 resp. 0.341. Note
that we may obtain real intervals when there are total choices with multiple answer sets.

5 Tractability Results

We define stratified normal dl- and stratified normal probabilistic dl-programs as fol-
lows. A normal dl-program KB =(L,P ) is stratified iff (i) L is defined in DL-Lite [5]
and (ii) trans(P ) is locally stratified. A probabilistic dl-program KB =(L,P,C, µ) is
normal iff P is normal. A normal probabilistic dl-program KB =(L,P,C, µ) is strati-
fied iff every of KB ’s represented dl-programs is stratified.

The following result shows that stratified normal probabilistic dl-programs allow
for consistency checking and query processing with a polynomial data complexity.

Theorem 5.1. Given Φ and a stratified normal probabilistic dl-program KB , (a) de-
ciding if KB has an answer set, and (b) computing l, u∈ [0, 1] for a given ground atom
q such that KB ‖∼tight(q)[l, u] can be done in polynomial time in the data complexity.
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